
Systers Portal Documentation
Release 1.0

Rose Robinson, Ana Balica, Chitra Khatwani

Jun 08, 2018

Contents

1 Administration of Systers Portal 3
1.1 Configuration of social accounts . 3

2 Development of Systers Portal 11
2.1 Prerequisites . 11
2.2 Contributing . 12
2.3 Architecture . 15
2.4 Communities . 16
2.5 Groups and Permissions . 17

3 Indices and tables 19

i

ii

Systers Portal Documentation, Release 1.0

Systers Portal is a platform for Systers communities to share information within and with other communities. The
following documentation is intended for Systers Portal developers and administrators.

Contents 1

Systers Portal Documentation, Release 1.0

2 Contents

CHAPTER 1

Administration of Systers Portal

1.1 Configuration of social accounts

Systers Portal offers the possibility of user authentication using local and social accounts. There are 4 social apps
available:

• facebook

• github

• google

• twitter

Each social app requires prior configuration. It is necessary to add a SocialApp record per provider via the Django
admin containing app credentials. The process of configuration for each provider is described in detail below.

Warning: The providers’ interface for generating API keys and client IDs might have changed slightly since this
tutorial was written, but the general process should be the same.

Note: Throughout this tutorial https://www.example.com domain is used for demonstration purposes. It should be
replaced with a real domain name, e.g. https://systers.org or http://localhost:8000 if developing on a local machine.

1.1.1 Facebook

The following section describes the configuration of social login using Facebook OAuth2. First signup as Facebook
developer. From the top toolbar go to Apps > Create a New App. Fill the form, click Create App. Choose Display
Name, unique Namespace and category.

3

https://www.example.com
https://systers.org
http://localhost:8000
https://developers.facebook.com/
https://developers.facebook.com/

Systers Portal Documentation, Release 1.0

On the left sidebar of the app click on Settings. On Settings - Basic page it is necessary to add a platform to the app.
Select platform - Website. Set Site URL to be https://www.example.com. Same domain name add to Add Domains.
Save changes.

If you are testing Facebook OAuth locally, then you can add http://localhost to App Domains and http://localhost:8000
to Site URL. It won’t work, if you use loopback IP address 127.0.0.1 instead of localhost.

On the Dashboard page you can find the App ID and App Secret. Go to Systers Portal and create a new social app at
https://www.example.com/admin/socialaccount/socialapp/add/. Select Facebook provider, choose a suggestive name
(e.g. Facebook OAuth2), copy the App ID and the App Secret to the SocialApp record. Choose the available sites for
which to enable the social auth with Facebook and hit Save.

To test if Facebook social auth using OAuth2 is configured properly, go to https://www.example.com/accounts/login/
and try to login using Facebook. You will be asked to authorize the application and will be redirected to a page to
enter your username and email that you want to use for login.

1.1.2 Github

Register a new oAuth application at https://github.com/settings/applications/new. Fill the form. Enter the Homepage
URL - https://www.example.com. The Authorization callback URL should be of the form:

https://www.example.com/accounts/github/login/callback/

4 Chapter 1. Administration of Systers Portal

https://www.example.com
http://localhost
http://localhost:8000
https://www.example.com/admin/socialaccount/socialapp/add/
https://www.example.com/accounts/login/
https://github.com/settings/applications/new
https://www.example.com

Systers Portal Documentation, Release 1.0

Immediately after you will be redirected to the Application dashboard to access the newly generated Client ID and
secret. Create a new social app for Systers Portal at https://www.example.com/admin/socialaccount/socialapp/add/.
Select Github provider, choose a suggestive name (e.g. Github OAuth), copy the Client ID and the secret to the
SocialApp record. Choose the available sites for which to enable the social auth with Github and hit Save.

To test if Github social auth is configured properly, go to https://www.example.com/accounts/login/ and try to login
using Github. You will be asked to authorize the application and will be redirected to a page to enter your username
and email that you want to use for login.

1.1.3 Google

The Google provider is OAuth2 based. More on using OAuth2 to access Google APIs: https://developers.google.com/
accounts/docs/OAuth2

Go to Google Developers Console and create a new project. A window will pop up for you to fill in project information.
Enter a suggestive name for the new project (e.g. Systers Portal), let the system generate a unique project ID and click
Create.

1.1. Configuration of social accounts 5

https://www.example.com/admin/socialaccount/socialapp/add/
https://www.example.com/accounts/login/
https://developers.google.com/accounts/docs/OAuth2
https://developers.google.com/accounts/docs/OAuth2
https://console.developers.google.com

Systers Portal Documentation, Release 1.0

Right after the project will be created, you will be redirected to Project Dashboard. Click on Enable an API button.
On the left sidebar in the section APIs & AUTH access Credentials page. A popup will appear to enter details to create
a client ID. Choose Web application. For Authorized Javascript Origins enter the website domain name. In Authorized
Redirect URI, type the development callback URL, which must be of the form:

https://www.example.com/accounts/google/login/callback

6 Chapter 1. Administration of Systers Portal

http://django-allauth.readthedocs.org/en/latest/#google

Systers Portal Documentation, Release 1.0

The system will generate a client ID and a secret for the following web application.

1.1. Configuration of social accounts 7

Systers Portal Documentation, Release 1.0

Create a new social app for Systers Portal at https://www.example.com/admin/socialaccount/socialapp/add/. Select
Google provider, choose a suggestive name (e.g. Google OAuth2), copy the Client ID and the Client Secret from
Google Developer Console to the SocialApp record. Choose the available sites for which to enable the social auth with
Google and hit Save.

To test if Google social auth is configured properly, go to https://www.example.com/accounts/login/ and try to login
using Google.

1.1.4 Twitter

Go to Twitter Apps page and create a new app. Fill the form. Enter the Website - https://www.example.com. The
Callback URL should be of the form:

https://www.example.com/accounts/twitter/login/callback/

8 Chapter 1. Administration of Systers Portal

https://www.example.com/admin/socialaccount/socialapp/add/
https://www.example.com/accounts/login/
https://apps.twitter.com/
https://www.example.com

Systers Portal Documentation, Release 1.0

On the Application Management page of Systers Portal, access the API keys tab. It contains the API key and API
secret necessary to enable authentication with twitter.

Create a new social app for Systers Portal at https://www.example.com/admin/socialaccount/socialapp/add/. Select
Twitter provider, choose a suggestive name (e.g. Twitter OAuth), copy the API key and the API secret to the SocialApp
record. Choose the available sites for which to enable the social auth with Github and hit Save.

To test if Twitter social auth is configured properly, go to https://www.example.com/accounts/login/ and try to login
using Twitter. You will be asked to authorize the application and will be redirected to a page to enter your username
and email that you want to use for login.

1.1. Configuration of social accounts 9

https://www.example.com/admin/socialaccount/socialapp/add/
https://www.example.com/accounts/login/

Systers Portal Documentation, Release 1.0

10 Chapter 1. Administration of Systers Portal

CHAPTER 2

Development of Systers Portal

2.1 Prerequisites

Before diving into development, please take a minute to check if you have all the necessary tools and skills to get
started. You should be familiar with the following:

• Unix environment (GNU/Linux, OS X, etc)

• Git version control system: committing, pushing, pulling, branching

• Python programming language

• Django framework

• HTML, CSS, JavaScript for front-end coding

• Unittesting

• PEP8

If you don’t know yet any of these, please take some time to read about, understand and practise the tools.

2.1.1 Unix System

Unix systems are so far the most developer-friendly environments. If you don’t have a Unix system installed on your
machine, try out Ubuntu. It is a free operating system with constant updates, friendly X Window System and comes
with Python pre-installed. From the developer’s perspective you should be comfortable using a terminal. Theoretically
is it possible to stick with Windows OS, though none or very little assistance will be provided for OS specific issues.

2.1.2 Git

If you have never heard of git, go ahead and read the first 3 chapters of Pro Git book. On the same page you can find
cheatsheets, video lessons and a reference manual.

11

http://www.ubuntu.com/download/desktop
http://git-scm.com/doc

Systers Portal Documentation, Release 1.0

2.1.3 Python

Please be sure you speak fluent Python, as it is the main language Systers Portal is written in. Essentially you should
know how to invoke Python interpreter, manipulate numbers, strings, lists, tuples, dictionaries, sets, use control flow
tools (if, for, break, continue, pass), I/O operations, errors and exceptions, classes, inheritance. It is a plus if you know
about decorators, regular expressions, generators, iterators.

2.1.4 Django

Django is one of the most popular Python web framework. Django official website contains pretty detailed documen-
tation. At first try out the tutorial and build a small app. After you feel confident about Django, scroll through Systers
Portal codebase to check your understanding. If some parts seem complicated, go back to the documentation to focus
on a specific topic or layer.

2.1.5 HTML, CSS, JavaScript

The good news is that the front-end of Systers Portal is kept as simple as possible. You should be comfortable with
writing HTML, CSS and maybe a bit of JavaScript.

2.1.6 Unittesting

“Untested code is broken code”, that’s why we try to write unittests for every new functionality. Testing helps us
validate the functionality we already have and check whether the new code is implemented correctly. For that we use
the Django unittest module. There are plenty of good resource on unittesting, but you can start with Django testing.

2.1.7 PEP8

PEP8 is the style guide for Python code. We are following the guide throughout the whole codebase and check
everything againt a PEP8 linter. So please take some time to read through this document - https://www.python.org/
dev/peps/pep-0008.

2.2 Contributing

If you want to start contributing to Systers Portal or you are a regular contributor, this is the place for you. It covers
such topics as setting up the project, working and updating pull requests, Continuous Integration with Travis.

Note: The $ symbol denotes the shell prompt, don’t type it.

2.2.1 Setup the project

Before doing any actual work, it is necessary to prepare your local machine for developement and deploy Systers
Portal locally.

1. Install git on your local computer. If on Ubuntu, run:

$ sudo apt-get install git-core

12 Chapter 2. Development of Systers Portal

https://docs.djangoproject.com/en/
https://docs.djangoproject.com/en/
https://docs.djangoproject.com/en/1.7/topics/testing/
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Systers Portal Documentation, Release 1.0

2. Set up your name and email address in git configuration:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

3. Go to http://github.com and create a GitHub account, if you don’t have one yet. Use the previously introduced
email to create the GitHub account. That way GitHub will be able to associate your git commits with your
GitHub profile.

4. Fork the Systers Portal repo. In the upper left corner there is Fork button. A “copy” of the project will appear
in the list of your repositories.

5. Generate SSH keys and add the public key to your GitHub account. GitHub provides a very good article on how
to do that.

6. Go to the page where the forked Systers Portal is. Copy the SSH clone URL from the right sidebar. If your
username is john-doe, then the url will be git@github.com:john-doe/portal.git. Now clone the
forked project to your system files:

$ git clone git@github.com:john-doe/portal.git

7. Install the project locally for development using this guide from project README.

8. Running tests and flake8 successfully with no errors or failures ensures that you have installed everything cor-
rectly.

2.2.2 Make a Contribution

Say you have decided to fix a bug or implement a new feature. This guide will show you step by step how to make a
contribution to Systers Portal.

1. Systers Portal stable branch is master. Periodically we make a release when the codebase is stable and can be
used in production. Develop branch is the branch that has all the latest changes and should be used as a base
branch for development. And so enter the portal directory and checkout to develop branch.

$ cd portal
$ git checkout develop

2. Choose a task to work on. It can be a beginners task or a sophisticated feature you want to implement for Portal.
For beginners we have tasks with easy TODO tag on GitHub issues.

3. Create a new feature branch from develop branch. The feature branch should have a short and relevant name.

$ git checkout -b <feature-branch-name>

4. Work on the task. Write tests if necessary. When you consider the task done, you should check the following:

(a) PEP8 style - flake8 systers_portal. If flake8 gives you warnings, please correct them. There
should be nothing on output.

(b) Tests - python systers_portal/manage.py test --settings=systers_portal.
settings.testing. This command will run all the tests. If a test will fail or give errors, please check
the traceback and correct the issues. Rerun the tests.

(c) Check test coverage:

$ coverage run systers_portal/manage.py test --settings=systers_portal.
→˓settings.testing
$ coverage report

2.2. Contributing 13

http://github.com
https://github.com/systers/portal/
https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/
https://github.com/systers/portal#setup-for-developers
https://github.com/systers/portal/issues

Systers Portal Documentation, Release 1.0

If the total coverage percentage is lower than the number that appears on the coverage badge on GitHub,
then write tests to keep it on the same level or improve the test coverage.

(d) If you have made any changes to the HTML or have manipulates the DOM using JavaScript, please check
the validity of the file. Open the page in the browser, copy the page source code and paste it here. If there
are errors, please correct them and revalidate.

5. If all the checks have passed, you can commit your changes. Please be careful to not commit any user-specific
files or changes that are out of scope. You can make more commits, if you consider it is necessary.

$ git add <file1> <file2>
$ git commit -m "relevant commit message"

6. Make sure you have the latest develop branch before pushing the feature branch. For that checkout to
develop and pull the latest changes. If develop branch was updated, you should switch back to your
feature branch and rebase your work against develop. Solve conflicts, if there are any.

$ git checkout develop
$ git pull origin develop
$ git checkout <feature-branch-name>
$ git rebase develop

7. Push the feature branch:

$ git push origin <feature-branch-name>

2.2.3 Make a Pull Request

We use peer code review to accept or reject the changes made by contributors. It helps to prevent many mistakes and
guarantee project quality. For that we use GitHub pull requests.

1. Go to GitHub and make a pull request. Choose a relevant title, add description if necessary and point to the
task you have solved. The source branch of the pull request should be your feature branch and the target branch
should be develop branch. Review your pull request and make sure everything is alright.

2. Someone from the team will review your code, provide feedback and if everything is ok, will merge your
changes. If asked to make any changes, update the pull request by one of the two strategies presented below.

3. Don’t forget to sync your fork in case the upstream repo was updated.

2.2.4 Update a Pull Request

Quite often the reviewer will leave comments and ask you to make some changes to the initial code. There are 2
strategies how to update your pull request.

Update same pull request

1. Checkout on the feature branch - the source branch of the pull request.

2. Work on enhancements and suggestions.

3. Make a commit with amend option. It will update your last commit and will change the SHA-1 of that commit.

$ git add <file1> <file2>
$ git commit -amend

14 Chapter 2. Development of Systers Portal

http://validator.w3.org/#validate_by_input
https://help.github.com/articles/syncing-a-fork/

Systers Portal Documentation, Release 1.0

4. Make a force push to the feature branch. This will update the pull request automatically. But will not notify the
reviewer about it, so consider leaving a comment about it in the pull request. The benefit is that the reviewer can
see a diff between the previous submission and the new one.

Create a new pull request

1. Checkout on develop branch and create a new feature branch with an incremented version value at the end of
the feature branch name.

$ git checkout develop
$ git checkout -b <feature-branch-name>2

2. Apply the same changes you have made on the first version of the feature branch, additionally applying en-
hancements and suggestions left by the reviewer.

3. Make a commit:

$ git add <file1> <file2>
$ git commit -m "relevant commit message"

4. Push the feature branch to GitHub and create a pull request.

5. Close the previous pull request manually.

2.2.5 Continuous Integration with Travis

Travis CI Systers Portal - https://travis-ci.org/systers/portal

Coveralls Systers Portal - https://coveralls.io/r/systers/portal

For continuous integration we use Travis CI service. Every time we make a push to Systers Portal repo, Travis builds
our project and runs the tests. It also notifies us about any errors or failures, that way preventing us from breaking the
project.

If you will make a pull request, you will see that Travis build will fail always. This doesn’t mean that your change broke
Portal. It happens because of a security issue, Travis being unable to decrypt the SECRET_KEY from an unknown
source. Unknown source being you, since you are not a member of the repo. Hence it is the responsibility of the repo
admins to fetch your branch and push it to GitHub themselves to check Travis build output.

Along with Travis CI, we use code test coverage metric using coveralls service. Please note that high coverage is not
a guarantee for good tests.

2.3 Architecture

This page will give you a generic overview on Systers Portal project architecture. As any other Django project Portal
organizes its functionality in several apps:

• blog - handles showing, adding, editing and deleting news and resources.

• common - generic functionality that can’t be part of any other app. For example, landing, about, contact pages,
generic models, helpers, mixins that are used in several apps.

• community - community and subcommunities functionality, like adding new communities, views and editing
community profiles, showing, adding, editing and deleting community pages, managing permissions regarding
each community.

• membership - handles showing, creating, approving and rejecting join requests to a community, removing and
inviting users to become members of a community.

2.3. Architecture 15

https://travis-ci.org/systers/portal
https://coveralls.io/r/systers/portal

Systers Portal Documentation, Release 1.0

• users - showing and editing user personal profile.

The templates are placed inside systers_portal/templates folder organized in a folder structure similar to
the apps tree. Respectively the templates location matches the views location.

Each app along with models, views, urls and other app related code (admin, forms, mixins, utils) contains a folder
with migrations and tests. The migrations are generated by Django and shouldn’t be edited manually. The tests folder
mimics the app modules covering each module with a separate test file. For example, tests for app_name/models.
py are contained in the app_name/tests/test_models.py.

2.4 Communities

2.4.1 Creating a community

In order to create a new community, it is enough to fill out necessary fields in a Community form.

When a new community is created, the following actions are triggered:

1. 4 new Groups are created using the name of the community

2. each new group is being assigned a set of usual Django permissions and row level permissions for the new
Community object

3. the admin of the Community is being added to the Community admin group

4. the admin of the Community is being added to Community members

Suppose we create a community named Systers with an admin called Foo. This is what is going to happen:

1. 4 new Group are created with the following names:

• Systers: Community Admin

• Systers: User and Content Manager

• Systers: Content Manager

• Systers: Content Contributor

The naming of groups is important and helps identify a community with its auth Groups.

2. Groups are being assigned specific permissions. All permissions are listed in this file.

3. “Foo” user is added to the Systers: Community Admin group.

4. “Foo” user is added to Systers members.

2.4.2 Editing a community

Community profile can be edited by changing any of the Community fields. On community update, the actions are
trigged only if name or admin have changed.

If community name changed then:

1. community groups will be renamed according to new community name

If community admin changed then:

1. old community admin is removed from Community admin group

2. new community admin is added to Community admin group

3. new community admin is added to Community members

16 Chapter 2. Development of Systers Portal

https://github.com/systers/portal/blob/master/systers_portal/community/permissions.py

Systers Portal Documentation, Release 1.0

Suppose we rename the community from Systers to Systers++. Hence all the community groups will be renamed:

• from Systers: Community Admin to Systers++: Community Admin

• from Systers: User and Content Manager to Systers++: User and Content Manager

• from Systers: Content Manager to Systers++: Content Manager

• from Systers: Content Contributor to Systers++: Content Contributor

Suppose we change community admin from Foo user to Bar user. This is what is going to happen:

1. user Foo is removed from Systers++: Community Admin group

2. user Bar is added to Systers++: Community Admin group

3. user Bar is added to Systers++ community members

2.4.3 Deleting a community

When a community is deleted, all the associated Groups are also deleted.

Suppose we delete the community named Systers. In this case the following groups will be deleted:

• Systers: Community Admin

• Systers: User and Content Manager

• Systers: Content Manager

• Systers: Content Contributor

2.5 Groups and Permissions

As it was previously discussed, each community is associated with 4 auth groups. Each group implies a specific set of
permissions:

• Community: Content Contributor – a user from this group can:

– add/change any tags and resource types

– add/change Community news and resources

• Community: Content Manager – a user from this group can do everything a user from Community: Content
Contributor can do, plus:

– delete any tags or resource types

– delete Community news or resources

– add/change/delete a Community page

– approve/delete comments to Community posts (news, resources)

• Community: User and Content Manager – a user from this group can do everything a user from Community:
Content Manager can do, plus:

– add/change/delete members of the Community

– approve Community join requests

• Community: Community Admin – a user from this group can do everything a user from Community: User
and Content Manager can do, plus:

2.5. Groups and Permissions 17

Systers Portal Documentation, Release 1.0

– edit Community profile

18 Chapter 2. Development of Systers Portal

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

	Administration of Systers Portal
	Configuration of social accounts

	Development of Systers Portal
	Prerequisites
	Contributing
	Architecture
	Communities
	Groups and Permissions

	Indices and tables

